UNIT Q Chapter 3 Lesson 1

If you see a fraction, ALWAYS clear the fractions first by multiplying everything on both sides by the denominators:

Example 1

$a=\frac{x}{y}$	There is a denominator
$(y) a=\frac{x}{x}(y)$	Multiply both sides by y to clear the denominator
$a y=x$	You have cleared the denominator

Example 2

$\frac{b}{a c}=\frac{x}{y}$	There are denominators : ac on the left and y on the right
$(a c y) \frac{b}{a c}=\frac{x}{y}(a c y)$	Multiply both sides by ac and y to clear the denominators on both sides
$(a c y) \frac{b}{d a}=\frac{x}{y}(a c y)$	The ac clears on the left of the equal sign, y clears on the right of the equal sign
$y b=x a c$ Or alphabetized: $b y=a c x$	You have cleared the denominators

Example 3 You can ALWAYS USE CROSS PRODUCTS TO CLEAR THE DENOMINATORS

$\frac{b}{a c} \frac{x}{y}$	The product of b and y is equal to the product of x and ac
$b y=a c x$	This also cleared the denominators and you got the same answer as above with fewer steps

Example 4 Try Cross products again!

$d=\frac{a b}{x y}$	You can put d over 1 to make it a fraction
$\frac{d}{1} \frac{a b}{x y}$	Now set the cross products equal
$d x y=a b$	

If you see a Distribution CLEAR the factor outside the distribution to "FREE" the terms inside the parenthesis:

Example 1

$a b=c(x-3)$	Distribution with c as the outside factor
$\frac{a b}{c}=\frac{c}{c}(x-3)$	Divide both sides by c to get rid of c on the right and free the terms in parenthesis
$\frac{a b}{c}=x-3$	You were able to "free" the terms from the parenthesis

Example 2

$a b=\frac{2}{3}(x-3)$	Distribution with $\frac{2}{3}$ as the outside factor
$\left(\frac{3}{2}\right) a b=\left(\frac{3}{2}\right) \frac{2}{3}(x-3)$	Multiply both sides by the reciprocal
$\left(\frac{3}{2}\right) a b=x-3$	You were able to "free" the terms from the parenthesis

Also keep in mind that the answer could have the opposite signs of your answer!
For example

$-b=x-3$	Negative b, positive x and negative 3
Is the same as: $b=-x+3$	Positive b, negative x and positive 3 (they flipped EVERONE'S sign)
And is the same as: $b=3-x$	Positive b, positive 3 and negative x (they just moved the 3 and x but kept the signs the same)

When every term on both sides signs change this happens in one of two ways:

1) EVERY term was multiplied by a - 1
or
2) Every term was divided by a - 1

As long as you maintain equality by doing one of the above to every term on both sides, this is correct mathematically.

